Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Da-Qing Shi, ${ }^{\text {a,b }}{ }^{*}$ Zheng-Yi Li, ${ }^{\text {a }}$ Chunl-Ling Shi, ${ }^{\text {a }}$ Xiang-Shan Wang ${ }^{\text {a }}$ and Yong Zhang ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, ${ }^{\text {b }}$ The Key Laboratory of Biotechnology, for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China, and ${ }^{\text {c School of Chemistry and Chemical Engineering, }}$ Suzhou University, Suzhou 215006, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.047$
$w R$ factor $=0.112$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

6-Chloro-3-(4-chlorophenyl)-3,4-dihydro-quinazolin-2(1H)-one acetone hemisolvate

The title compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, was synthesized by the reaction of 5-chloro- N -(4-chlorophenyl)-2-nitrobenzylamine with triphosgene, induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$. The dihydroquinazoline ring exhibits a boat conformation. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form centrosymmetric dimers. There are also some weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Quinazolines are an important class of compound found in many naturally occurring products (e.g. hinckdentine A; Blackman et al., 1987; Billimoria \& Cava, 1994), and employed as potent anticancer agents (Helissey et al., 1994; Brana et al., 1994; Riou et al., 1991; Ibrahim et al., 1988). Low-valent titanium reagents have an exceedingly high ability to promote the reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 1993, 1997, 1998, 2003, 2004). As part of our continuing interest in this field, the structure of the title compound, (I), has been investigated.

(I)

A molecular view of (I) is shown in Fig. 1. The bond lengths and angles have the usual values found for structurally similar molecules in the Cambridge Structural Database (CSD; Version 5.24; Allen, 2002). The heterocyclic ring has a boat conformation (Fig. 1). Atoms C3, C4, N2 and C1 are coplanar, while atoms N 1 and C 2 deviate from the plane by 0.085 (2) and 0.189 (2) \AA, respectively. Because of the existence of a conjugated system, the $\mathrm{N} 1-\mathrm{C} 4[1.399$ (2) $\AA]$ and $\mathrm{N} 1-\mathrm{C} 1$ $[1.355(2) \AA]$ distances are significantly shorter than the typical $\mathrm{Csp}{ }^{2}-\mathrm{N}$ bond distance (1.426 \AA; Lorente et al., 1995). Atoms N1 and N2 are coplanar. In the crystal structure there are some acetone solvent molecules, but these solvent molecules are not involved in intermolecular hydrogen bonds with (I). However, an intermolecular hydrogen bond is formed between the amine H atom and carbonyl atom O1 (Table 1); these dimers pack along the a axis. In addition, some weak

Received 14 September 2004 Accepted 19 November 2004 Online 27 November 2004

Figure 1
The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.
intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions may be considered (Table 1).

Experimental

The title compound, (I), was prepared by the reaction of 5 -chloro- N (4^{\prime}-chlorophenyl)-2-nitrobenzylamine $(0.61 \mathrm{~g}$) with triphosgene $(0.89 \mathrm{~g})$, induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$ (yield 81%; m.p. $589-590 \mathrm{~K}$). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol-acetone solution. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3222(\mathrm{NH}), 1674(\mathrm{CO}), 1593,1489,824,748$ (phenyl ring); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $4.82\left(2 \mathrm{H}, s, \mathrm{CH}_{2}\right), 6.88(1 \mathrm{H}, d, J=8.8 \mathrm{~Hz}$, $\mathrm{ArH}), 7.24-7.28(2 \mathrm{H}, m, \mathrm{ArH}), 7.38-7.46(4 \mathrm{H}, m, \mathrm{ArH}), 9.79(1 \mathrm{H}, s$, NH).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=322.18$
Monoclinic, $P 2_{1} / n$
$a=5.806$ (2) \AA 。
$b=13.250$ (4) \AA
$c=18.810$ (6) \AA
$\beta=90.802(7)^{\circ}$ 。
$V=1447.0$ (8) \AA^{3}
$Z=4$
Data collection
Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.759, T_{\text {max }}=0.877$
15816 measured reflections
3315 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.112$
$S=1.14$
3315 reflections
210 parameters
H -atom parameters constrained

Table 1
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.99	$2.847(2)$	175
$\mathrm{C} 2-\mathrm{H} 2 A \cdots 1^{\mathrm{ii}}$	0.97	2.41	$3.374(2)$	176

[^0]$$
D_{x}=1.479 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 6413
reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.45 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, colorless
$0.65 \times 0.35 \times 0.30 \mathrm{~mm}$

3067 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-6 \rightarrow 7$
$k=-15 \rightarrow 17$
$l=-24 \rightarrow 24$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0428 P)^{2}\right. \\
& \quad+0.7556 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.007 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
The crystal packing of (I). Dashed lines indicate hydrogen bonds.

All H atom were constrained to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}, \mathrm{C})$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. The acetone solvent is disordered equally over an positions around the inversion center. The disorder was refinedrefined with the aid of restraints on geometry and displacement parameters.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: SHELXL97.

We thank the Natural Science Foundation of the Education Committee of Jiangsu Province (No.03KJB150136) and the Foundation of the Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province (No. 02AXL13) for financial support.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Billimoria, A. D. \& Cava, M. P. (1994). J. Org. Chem. 59, 6772-6782.
Blackman, A., Hambley, T. W., Picker, R., Taylor, W. C. \& Thirasana, N. (1987). Tetrahedron Lett. 28, 5561-5564.

Brana, M. F., Castellano, J. M. Keilahauer, G., Machuca, A., Martin, Y., Redondo, C., Schlick, E. \& Walker, N. (1994). Anti-Cancer Drugs Des. 9, 527-538.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Helissey, P., Cros, S. \& Giorgi-Renault, S.(1994). Anti-Cancer Drugs Des. 9, 5157.

Ibrahim, E. S., Montgomeric, A. M., Sneddon, A. H., Proctor, G. R. \& Green, B. (1988). Eur. J. Med. Chem. 23, 183-188.

Jacobson, R. (1998). Private communication.
Lorente, A., Galan, C., Fonseea, I. \& Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546-1555.

organic papers

McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Riou, J. F., Helissey, P., Grondard, L. \& Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699-706.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shi, D. Q., Chen, J. X., Chai, W. Y., Chen, W. X. \& Kao, T. Y. (1993). Tetrahedron Lett. 34, 2963-2964.

Shi, D. Q., Lu, Z. S. \& Dai, G. Y. (1998). Synth. Commun. 28, $1073-$ 1078.

Shi, D. Q., Mu, L. L., Lu, Z. S. \& Dai, G. Y. (1997). Synth. Commun. 27, 41214129.

Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. \& Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.

Shi, D. Q., Wang, J. X., Shi, C. L., Rong, L. C. \& Hu, H. W. (2004). Synlett, pp. 1098-1100.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

[^0]: Symmetry codes: (i) $-x, 2-y, 1-z$; (ii) $1+x, y, z$.

